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It is proved that both the prediction problem and the problem of reconstructing 
the state from the observations in quan tum mechanics are NP-hard. 

G E N E R A L  I N T R O D U C T O R Y  R E M A R K  

We prove that both the prediction problem and the problem of recon- 
structing the state from given observations in quantum mechanics are in 
the general case intractable (or, using the precise mathematical notion from 
complexity theory, NP-hard). This result can be of interest to two groups 
of readers: those who are well acquainted with the mathematical problems 
of quantum physics and those who are well acquainted with algorithmic 
complexity and NP. We do our best to make this text understandable to 
both. Therefore we include brief explanations of both the quantum 
mechanics formalism and the formal notion of intractable (NP-hard) prob- 
lems. Those readers already familiar with one of these notions can simply 
skip the corresponding part. 

1. INTRODUCTION: PREDICTION PROBLEM 
IN PHYSICAL TERMS 

Before we formulate the problems in mathematical terms we want to 
explain their physical origin. By prediction we mean that for some given 
object (or system), after performing some measurements, we are able to 
predict something about its future: namely, what future behavior is possible 
and what is not. Prediction is what all the physics is for. 

For example, we study substances to predict how they will behave in 
different situations; we study electromagnetic waves in order to find out 
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whether some concrete electronic device will work properly or some mis- 
behavior is possible. In quantum physics, we have, e.g., an accelerator, we 
measure energy, polarization, and maybe some other characteristics of the 
particles that are emitted by this accelerator. Then we place some target in 
their way and we want to predict what will happen, e.g., is it possible that 
90% of these particles hit the target, etc.? 

We show that this prediction problem is in the general case difficult to 
solve (in a precise mathematical sense). 

Another problem that is closely connected with this one is: to determine 
the real state of the object from known experimental results. This problem 
is connected with the prediction problem, because often, when we have to 
predict, we first determine the state of the object and then make predictions 
based on this state. This is a most natural (direct) way to predict. However, 
usually experimental results are not sufficient to reconstruct the state 
uniquely, so we can either produce at least one state consistent with all the 
observations or try to produce all of them. The simplest possible version 
of this problem is: to produce at least one state that is consistent with all 
the observations. We show that even in this simplest form the state recon- 
struction problem is in general also hard to solve. 

2. H O W  TO FORMULATE THIS PROBLEM 
IN MATHEMATICAL TERMS 

This section contains the motivation of the formal definitions given in 
Section 3. So readers who are interested mainly in the mathematical result 
itself can skip this section and go to Section 3. 

In order to formulate the above problems in mathematical terms, let 
us briefly recall the mathematical formalism of quantum mechanics (see, 
e.g., yon Neumann, 1955), or, to be more precise, parts of this formalism 
that are relevant to the problems of prediction and state reconstruction. In 
quantum mechanics possible states of objects and systems are represented 
by vectors in some abstract (Hilbert) space. If  we choose a base for 
that space, then these states are represented by complex vectors s = 
(Sl, s~, . . . ,  sn, �9 �9 .) such that the sum of the squares of all the modules ]s~[ 2 
equal to 1. In the following we always assume that some base is fixed, so 
by a state we always mean a vector. 

In the quantum formalism, experiments or observations are represented 
by self-adjoint matrices A = IlA,j[I, i.e., matrices for which Aji = A* (here z* 
means a complex conjugate to z). In classical (nonquantum) physics, if we 
fix the state of the object and the concrete experiment, then the results of 
this experiment are uniquely determined. Quantum mechanics is essentially 
stochastic in the sense that if we repeat the same experiment with several 
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identical copies of  the same system, then, generally speaking, we get different 
results. The only thing we can determine from these experiments is one or 
several characteristics of  the corresponding probabilistic distribution of the 
possible experimental  results. 

I f  the corresponding sample is small, the only characteristic that we 
can efficiently reconstruct from it is the average value of the observable in 
the analyzed state. According to the quantum formalism, the average value 
of  the observable A in the normalized state s equals the sum of Aus~s* for 
all i,j; this sum is denoted by (As, s). Of course, it is impossible to reconstruct 
the average precisely when the sample is finite, so in reality from the 
experiments we get only the estimates for this average (As, s), i.e., values 
a - ,  a + such that the average is between them. 

I f  the sample is sufficiently big, we can determine not only the average 
values, but the probabilistic distribution itself, i.e., the probabilities of  
different outputs. According to the formalism of the quantum mechanics, 
every experiment normally has only finitely many possible outcomes (or at 
least a discrete set of  possible outcomes). 

Comment. The fact that physical variables like energy or angular 
momentum that were supposed to be changing continuously and which 
everyone thought take arbitrary real values can take only finitely many 
different values is called quantization and its experimental discovery started 
quantum mechanics. 

According to the formalism of quantum mechanics, these possible 
values are eigenvalues vl, �9 �9 �9 vn, �9 �9 �9 of  the matrix A, and the probabili ty 
to obtain the value vi is (Pis, s), where Pi is a matrix such that the transforma- 
tion s ~ Pis is an orthogonal projection of a vector s onto the eigenspace 
corresponding to v~. 

Of  course, in reality we can perform only finitely many experiments, 
so we have only a finite sample, and from this finite sample we cannot 
reconstruct the precise values of  the probabil i t ies--only frequencies. 
Frequency is a good approximation to the probabi l i ty-- the  greater the 
sample, the better but still, as a result of  the experiments, we get not the 
precise value of (P~s, s), but the lower and upper  bounds p -  and p+ such 
that (Pis, s) belongs to the interval [ p - ,  p+]. 

So in all cases the only knowledge about the state s that we get from 
the experiments is that (A~s, s) belongs to the interval [a~-, a~-] for i =  
1, 2, 3 , . . . ,  m, where Ai are given matrices and a~-, a~ are given numbers. 

Due to the stochastic character of  quantum mechanics, the notion of 
prediction is also somewhat  different from the classical case: even if we 
know the state precisely, we cannot predict uniquely the results of  future 
experiments; the only things that we can predict are average values and 
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probabilities of  different results. In reality our knowledge of the state is 
usually incomplete, so we cannot predict the concrete values of  these 
averages of  probabilities, but what we can try to do is to predict whether 
it is possible that these values (probabilities) will belong to some given 
interval or not. 

Due to the fact that all the measurements and estimates are approxi- 
mate, we can, without losing any generality, retain only finitely many digits 
of  ai, so we can consider only the case when a + and a?  are binary rational 
numbers. In view of that, although we stressed that the precise values of  
averages and probabilities are unknown, if the sample is sufficiently big so 
that the resulting precision in the estimate is much greater than the precision 
of our computer,  then both estimates a~- and a + can correspond to equal 
binary rational numbers. In view of that, we will not suppose that these 
estimates are different. 

The same remark about  the approximate character can be applied to 
the components  of  the matrices Ai ; therefore both the real and the imaginary 
parts of  all their elements can be supposed to be binary rational. 

Another remark: in the computer  (or in any other storage) we can keep 
only finitely many real numbers;  therefore, although in quantum mechanics 
some operators are represented by infinite-dimensional matrices, we know 
only their finite-dimensional part. 

One can argue about  these restrictions, but due to the fact that we are 
going to prove a negative result, whether these restrictions are too restrictive 
or not is not important: for example, if we prove that the problem is 
intractable in the finite-dimensional case, then of course it means that it is 
intractable in the general case as well. 

So we arrive at the representation of  our knowledge in terms of a 
system of  quadratic inequalities. The formalization of our problems is now 
straightforward. By reconstructing the state, we mean finding the vector x 
for which all these inequalities are t rue- - to  be more precise, computing all 
the components  of  this vector with given precision. By predicting the results 
of  future experiments we mean the following problem: given some additional 
matrices (corresponding to future experiments) and additional intervals, is 
it possible that for some vector s satisfying the first system of inequalities, 
all the inequalities from the second system are also valid? In other words, 
is the joint system of inequalities consistent? 

Let us repeat these formulations in purely mathematical terms. 

3. MATHEMATICAL FORMULATION OF THE PROBLEMS 

General Definitions. Suppose some integer N is given. It will be the 
dimension of  the state space. By a norm Isl of a complex N-dimensional  
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vector s = (s~, s 2 , . . . ,  sN) we mean  the square root  o f  the sum of  the squared 
modules  Is, I 2 of  its components .  By a state we unders tand  a complex  vector 
s with a unit norm (Isl = 1). Binary rational numbers  are defined in the 
usual manner :  as numbers  represented in the s tandard  computer  binary 
form c_k. . ,  c_2c_1co" clc2. . ,  cp for some k and p, where c i = 0  or 1. By an 
observable A we mean a complex self-adjoint N • N matrix with elements 
A 0 (self-adjoint means that  Aji = A*). For  every observable A and state s, 
by (As, s) we mean the sum of A(isisj*- for all i, j. We say that an observable 
is efficiently defined if both  real and imaginary parts o f  all its elements A 0 
are binary rational. 

By a knowledge we mean a finite list of  triples (A~, a~, a~-), where A~ 
is an efficiently defined observable,  and a j-, a f are binary rational numbers.  
We say that a state s is consistent with the knowledge K if for all the triples 
f rom that knowledge the value (Ais, s) belongs to the interval [a~-, a~]. We 
say that a knowledge K is consistent if there exists a vector  x that is consistent 
with K. 

By a future behavior we mean a finite set o f  triples like those in the 
definitions o f  the knowledge  (so f rom the mathemat ical  viewpoint  these 
definitions coincide;  they differ only in interpretation).  

Prediction Problem. Given a knowledge K and a future behavior  K ' ,  
find whether  there exists a state x that is consistent both  with K and K' .  

State Reconstruction Problem. Given a consistent knowledge K and 
e > 0, compute  all the componen t s  o f  some vector x consistent with this 
knowledge,  with precision e. 

Comment. The first problem is to find whether  a given system of  
quadrat ic  inequalities o f  special type has any solutions, and the second 
problem is, in case such a solution exists, to find it. 

4. F O R M U L A T I O N  O F  T H E  R E S U L T  

Preliminary Comments. We want to prove that these problems are 
NP-hard.  This not ion (see, e.g., Garey  and Johnson,  1979) means that if 
there existed an algori thm allowing one to solve them in polynomial  time 
(i.e., whose running time does not exceed some polynomial  o f  the input  
length), then the polynomial- t ime algorithm would  exist for practically all 
discrete problems such as the proposi t ional  satisfiability problem, discrete 
opt imizat ion problems,  e t c . - - and  it is a c o m m o n  belief that for at least 
some of  these discrete problems no polynomial- t ime algori thm is possible. 
So the fact that  the problem is NP-hard  means that no matter what  algori thm 
we use, there will always be some cases for which the running time grows 
faster than any p o l y n o m i a l - - a n d  therefore for these cases the problem is 
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intractable. In other words: no practical algorithm is possible that solves 
the problems of prediction or state reconstruction in all cases. 

Theorem. The prediction problem and state reconstruction problem 
are NP-hard. 

5. P R O O F  

Preliminary Remark. Although in the formulation of the prediction 
problem we have two separate sets of triples--knowledge K and future 
behavior K ' ,  we never consider them separately; the only thing we are 
interested in is to find whether there exists an s satisfying all the inequalities 
from both K and K',  i.e., from the union of those lists. So although the 
division into knowledge and future behavior is physically meaningful, from 
the mathematical viewpoint the problem can be reformulated as follows: 
given a set of triples, to find whether it is consistent or not. In the following 
proof  we use this reformulation. 

1. First let us prove that the prediction problem is NP-hard. Namely, 
we show that if it were possible to solve it in polynomial time, then it would 
be possible to solve in polynomial time a problem that is already known 
to be NP-hard: the so-called satisfiability problem for 3-CNF (see, e.g., 
Garey and Johnson, 1979). This problem consists of the following: suppose 
an integer n is fixed, and a formula F of the type F1 & F 2 & ' . "  & Fk is 
given, where each of the expressions F~ has the form a v b or a v b v e, and 
a, b, c , . . .  are either xl, x2, �9 �9 x, or their negations )71, X2 . . . .  , xn. If  we 
assign arbitrary logical values ("true" or "false") to n variables x~, 
x 2 , . . . ,  x,, then, applying the standard logical rules, we get the truth value 
of F. The problem is to find such truth values of  xi for which the truth 
value of the expression F is "true." 

We undertake the promised reduction in several steps. 
2. It is known that the satisfiability problem for 3-CNF can be reduced 

to the problem of solving the system of quadratic equations with the real 
variables Yi that can take only two possible values 0 and 1. To undertake 
this reduction, let us introduce for every F; of the form a v b v c three new 
real variables corresponding to a, b, c, and two new real variables for every 
Fi of the type a v b. Then the total number of these real variables is three 
times the number of terms a v b v c plus two times the number of  terms 
a v b. The corresponding system of equations is formed as follows: for every 
term Fi= a v b v c we add the equation a + b + c =  1, where a, b, e are the 
corresponding variables (respectively a + b = 1 for F = a v b). Then for every 
pair (a, b) of the new variables that corresponds to some Boolean variable 
X~ and its negation, we add the equation ab = O. 
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Let us prove that  this system has a solution with values f rom {0, 1} iff 
the original satisfiability p roblem has a solution. Indeed,  if xl ,  x2, �9 �9 �9 form 
the solution o f  the satisfiability problem, i.e., the truth value o f  F is " t rue ,"  
then the t ruth values o f  all the Fi are also true. So for every Fi = a v �9 �9 �9 at 
least one o f  the terms a , . . .  has the truth value " t rue ."  Take one o f  them, 
and assign to the cor responding  real variable the value 1 and to all the 
others the value 0. Then a + b + . . . .  1 by definition, and ab = 0 for  a, b 
that  cor respond  to xi and Yg, because we assign 1 only in case the correspond-  
ing logical term has truth value " t rue ,"  and x~ and Yi cannot  both  take this 
truth value. 

Conversely,  assume that  we have found  a solution o f  the above-defined 
system of  quadrat ic  equations.  Let us show how to construct  the solution 
o f  the satisfiability problem. We show how to assign truth values to 
xl ,  . . . ,  x,. I f  at least one o f  the real variables cor responding  to x~ equals 
1, then we assign " t rue ;"  if at least one real variable cor responding  to Yi 
equals 1, then we assign " fa lse"  to x~; in the remaining cases we assign 
whatever.  The equat ions ab = 0 guarantee that  this assignment is correct, 
i.e., we cannot  assign both  the values " t rue"  and "false."  Then the fact that  
a + b +  . . . .  1 means that at least one o f  f'he cor responding  terms in F~ 
" t rue,"  so all F~ have the truth value " t rue ,"  and therefore F is true for 
these xi. 

3. We have proved that the satisfiability p rob lem can be reduced to 
the problem o f  whether  some system of  quadrat ic  equat ions has a solut ion 
with values f rom {0, 1}, i.e., whether  there exist such values o f  the variables 
a, b, c , . . .  that  satisfy all these equat ions and each o f  them equals to 0 or 
1. Our  ult imate goat is to try to reduce the satisfiability problem to the 
quan tum predict ion problem. In the latter problem all  the condi t ions  on 
the variables s~ are in terms of  quadrat ic  inequalities, so if we want  our  
problem to look like this we must  reformulate  this addit ional  condi t ion that 
all the variables take only the values 0 or  1 in terms o f  quadrat ic  inequalities 
(in particular, quadrat ic  equations).  

This can be done  easily, because the condi t ion that a = 0 or  a = 1 is 
equivalent to the equat ion a(1 - a)  = 0. So if we add an equat ion a(1 - a)  = 0 
for all the variables a to the system, described in step 2, we can make the 
fol lowing conclusion:  if the resulting system has a solution in real numbers,  
then, given this solution, we can easily compute  the solution o f  the original 
satisfiability problem. 

4. This system has both linear and quadrat ic  terms, and we want  to 
reduce the satisfiability problem to the case o f  quadrat ic  inequalities that 
have no linear terms. So in order  to come closer to the desired form, let us 
reduce the satisfiability problem to quadrat ic  equations,  for which there are 
no linear terms. Assume M is the total number  o f  variables in the system 
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constructed in step 3. For  convenience,  let us denote  these variables by Yl, 
Y2, . - . ,YM. To under take  the desired reduction,  let us in t roduce a new 
variable yM+~, add a new equat ion y~4+1 = 1, and change every equat ion 

yi+Yj+Yk = 1 to YiYM+I+YjYM+I+YkYM+I =1 ,  and yg-y~=O to YiYM+l-- 
y~ = 0. I f  y ~ , . . . ,  YM is a solution of  the old system, then adding YM+I = 1, 
we get the solution o f  the new system. Conversely,  if y ~ , . . . ,  YM+I form a 
solution o f  the new system, then YM+~ = 1 or - 1 ,  and one can easily check 
that  the values Yl = yM+~yi satisfy the old system. 

5. So we have reduced the satisfiability problem to the problem of  
solving the system of  quadrat ic  equations with no linear parts. We want  to 
reduce the system to one that  corresponds to the predict ion problem in 
quan tum mechanics.  There we have complex variables s i - - and  we have real 
variables yi, but  this is not  a contradict ion,  because real numbers  are a 
part icular  case o f  complex  ones. However ,  two things are different: first, 
the quadrat ic  equat ions in the quan tum case are o f  the special form (As, s) 
for self-adjoint A, and, second,  there is the addit ional  demand  that Is12= 1. 
w e  show in two steps how to reduce the quadrat ic  equations we get to 
these kinds o f  equations.  

The absence o f  the linear parts means that  each equat ion can be 
represented in the fol lowing form: the sum of  terms propor t ional  to y~yj 
for  some i , j  ( i = j  or i > j )  is equal to some fixed value a (0 or 1). I f  we 
denote  the coefficients at ygy~ by a~ and set ao = 0 if there is no such term 
in the equat ion,  then this equat ion takes the fol lowing form: the sum of  
the terms agjyjyj (for all i less than or equal to j )  is equal to a. There is a 
s tandard  way to represent this equat ion in terms of  (Ay, y )= a for some 
symmetr ic  matrix A: just  take A ,  = a~i and A~j = Aj~ =�89 aij for i<j. The 
matrix A is real and symmetric,  and hence self-adjoint. It is also easy to 
check that  all the coefficients o f  the matrix A are either 0 or 1 or �89 o f  
them binary rational,  so all these matrices are efficiently defined observables 
in the sense o f  Section 3. 

6. So we have already reduced the satisfiability problem to the problem 
of  whether  a given system of  quadrat ic  equat ions (Ay, y) = a has a solution. 
This is not  yet a quan tum predict ion problem, because in that problem we 
look only for solutions that  are states ( N  2= 1), and in our  system it is not  
necessarily true that lyl 2= 1. So we need a further reduction. 

Some estimates for lyl 2 can be deduced  f rom this system of  equations:  
namely,  for every variable it is true that yg = 1 or  0, so ly[ 2 (the sum of  M + 1 
terms ly, I 2) is not  greater than M + 1. So if we take s = cy, where c is a small 
constant  [so that c2(M+ 1) < 1], then ]sl 2 will be less than 1. Every equat ion 
(Ay, y )= a is equivalent to (As, s)= c2a, so we have reduced the initial 
NP-hard  problem to the problem of  finding s~ that satisfy the system of  the 
quadrat ic  equat ions (As, s) = a' and we know that all possible solutions of  
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this system satisfy the inequality [s[2< 1. Let us now add one more variable 
sM+2 and the additional equation s~2+ 2 s2+" �9 "+s2§ = 1. If  this new 
system has a solution, then $1, �9 �9  sM§ form the solution of the old system. 
Conversely, if s l , . . . ,  sM§ is a solution of the old system, then we can take 

2 s ~ - . .  2 (we have already sM+2 equal to the square root of 1 -  s~ -  "-sM+~ 
proved that it is positive); then the resulting vector will satisfy all the 
quadratic equations and also the additional equation Isl 2-- 1. 

7. This system is almost completely in the desired form; the only thing 
that we still have to check is that all the estimates a- ,  a § (in our case, 
numbers a ' =  ac 2) are binary rational numbers. Here a = 0 or 1; so we must 
take c such that c 2 is binary rational. For example, we can take c = 2 -k, 
where k is so big that c 2 = 2 -2k < 1 / ( M +  1). This choice of  c completes the 
reduction. 

8. So for every propositional formula F in the 3-CNF form we have 
constructed a quantum prediction problem such that F is satisfiable iff this 
problem is solvable. Therefore, if we have an algorithm for deciding whether 
quantum prediction problems are solvable or not, we immediately get an 
algorithm for solving the satisfiability problems--or ,  in mathematical terms, 
that the quantum prediction problem is NP-hard. 

9. Let us now prove that the state reconstruction problem is also 
NP-hard. Suppose that there exists an algorithm that solves the state recon- 
struction problem and its running time is always limited by some polynomial 
P(n), where n is the length of  the input data. Let us show that we are now 
able to solve satisfiability problems in polynomial time. 

Indeed, suppose we have a formula F in the 3-CNF form. Following 
the above scheme, let us construct a quantum prediction problem corre- 
sponding to F. The total number of variables si in that problem is M + 2, 
where M is limited from above by the length n of the formula F; the 
number of  equations that come from a + b + c = 1 is also at most n; and 
there are no more than M 2 equations coming from ab =0;  so the total 
number of the equations is bounded by a constant times n 2. Hence the 
number B of  bits necessary to store the data of  this problem is bounded 
by Cn 2. In formulating this problem there was a tiny ambiguity about 
choosing c. Let us choose c = 2 k, where k is the minimal one, for which 
c~-<l/(M+l);  so k is of  order log2 M. 

Let us take e = c/4 and apply the state reconstruction algorithm. Simul- 
taneously with this algorithm, start running a timer that will stop this 
algorithm after P(B) steps. So this combined algorithm will stop in any 
case after P(B) steps, i.e., taking into consideration that B < Cn 2, in the 
time bounded by a polynomial of n. 

In case the prediction problem has a solution, this algorithm will 
produce the approximate values Se to some solution si of the prediction 
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problem, i.e., produce the real values Si such that ]S i -  s;I < e for all i. We 
show that this precision is sufficient to reconstruct the solution of the 
satisfiability problem from S~. Indeed, the truth values are assigned to the 
variables xi of  the proposit ional formula F depending on whether the 
variables Yi in the above construction are equal to 0 or 1. In terms of si = cy~ 
this means that we have to check whether si is equal to 0 or c. I f  we know 
S~ such that ]S~-si[ < e/4,  then in the first case S~ < c/4,  in the second case 
S i>  3/4c; so by comparing every Sg with c/2,  we get all the information 
that is necessary for reconstructing Boolean variables. 

In view of that, we can propose the following algorithm for checking 
whether it is possible to assign truth values to x~ so that F is true: namely, 
we first run the above-described combined algorithm. I f  it does not generate 
any Si at all, this means that the quantum prediction problem has no solution 
at all: because otherwise this combined algorithm would produce its sol- 
ution. I f  it generates some S~, reconstruct truth values for x~ from them and 
substitute them into the given formula F. I f  the resulting truth value for F 
is "true," this means that the formula  is satisfiable in the sense that such 
truth values exist. I f  the resulting truth is "false,"  this means that the formula 
is not satisfiable, because otherwise the quantum prediction problem would 
be solvable, and our algorithm would generate its solution, for which, as 
we have already proved, the corresponding truth values of x~ lead to " t rue"  
for F. 

So if we have a polynomial  algorithm for state reconstruction, then we 
get a polynomial  algorithm for satisfiability. Hence the state reconstruction 
problem is also NP-hard. QED 
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